Noch Fragen? 0800 / 33 82 637

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

Produktform: E-Buch Text Elektronisches Buch in proprietärem

This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-1-4471-5185-2 / 978-1447151852 / 9781447151852

Verlag: Springer London

Erscheinungsdatum: 15.06.2013

Seiten: 374

Autor(en): Chris Aldrich, Lidia Auret

117,69 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück