Noch Fragen? 0800 / 33 82 637

Using Artificial Neural Networks for Analog Integrated Circuit Design Automation

Produktform: E-Buch Text Elektronisches Buch in proprietärem

This book addresses the automatic sizing and layout of analog  integrated circuits (ICs) using deep learning (DL) and artificial neural networks (ANN). It explores an innovative approach to automatic circuit sizing where ANNs learn patterns from previously optimized design solutions. In opposition to classical optimization-based sizing strategies, where computational intelligence techniques are used to iterate over the map from devices’ sizes to circuits’ performances provided by design equations or circuit simulations, ANNs are shown to be capable of solving analog IC sizing as a direct map from specifications to the devices’ sizes. Two separate ANN architectures are proposed: a Regression-only model and a Classification and Regression model. The goal of the Regression-only model is to learn design patterns from the studied circuits, using circuit’s performances as input features and devices’ sizes as target outputs. This model can size a circuit given its specifications for a single topology. The Classification and Regression model has the same capabilities of the previous model, but it can also select the most appropriate circuit topology and its respective sizing given the target specification. The proposed methodology was implemented and tested on two analog circuit topologies. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-030-35743-6 / 978-3030357436 / 9783030357436

Verlag: Springer International Publishing

Erscheinungsdatum: 11.12.2019

Seiten: 101

Autor(en): Nuno Horta, Ricardo M. F. Martins, Nuno C. C. Lourenço, Nuno Lourenço, Ricardo Martins, João Rosa, Daniel Guerra, João P. S. Rosa, Daniel J. D. Guerra, Nuno C. G. Horta

69,54 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück