Noch Fragen? 0800 / 33 82 637

Z User Workshop, York 1991

Proceedings of the Sixth Annual Z User Meeting, York 16–17 December 1991

Produktform: Buch / Einband - flex.(Paperback)

In ordinary mathematics, an equation can be written down which is syntactically correct, but for which no solution exists. For example, consider the equation x = x + 1 defined over the real numbers; there is no value of x which satisfies it. Similarly it is possible to specify objects using the formal specification language Z [3,4], which can not possibly exist. Such specifications are called inconsistent and can arise in a number of ways. Example 1 The following Z specification of a functionf, from integers to integers "f x : ~ 1 x ~ O· fx = x + 1 (i) "f x : ~ 1 x ~ O· fx = x + 2 (ii) is inconsistent, because axiom (i) gives f 0 = 1, while axiom (ii) gives f 0 = 2. This contradicts the fact that f was declared as a function, that is, f must have a unique result when applied to an argument. Hence no suchfexists. Furthermore, iff 0 = 1 andfO = 2 then 1 = 2 can be deduced! From 1 = 2 anything can be deduced, thus showing the danger of an inconsistent specification. Note that all examples and proofs start with the word Example or Proof and end with the symbol.1.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-540-19780-5 / 978-3540197805 / 9783540197805

Verlag: Springer Berlin

Erscheinungsdatum: 06.08.1992

Seiten: 408

Auflage: 1

Zielgruppe: Research

Herausgegeben von J. E. Nicholls

53,49 € inkl. MwSt.
kostenloser Versand

sofort lieferbar - Lieferzeit 1-3 Werktage

zurück